Shotgun metagenomic data reveals significant abundance but low diversity of “Candidatus Scalindua” marine anammox bacteria in the Arabian Sea oxygen minimum zone
نویسندگان
چکیده
Anaerobic ammonium oxidizing (anammox) bacteria are responsible for a significant portion of the loss of fixed nitrogen from the oceans, making them important players in the global nitrogen cycle. To date, marine anammox bacteria found in both water columns and sediments worldwide belong almost exclusively to "Candidatus Scalindua" species. Recently the genome assembly of a marine anammox enrichment culture dominated by "Candidatus Scalindua profunda" became available and can now be used as a template to study metagenome data obtained from various oxygen minimum zones (OMZs). Here, we sequenced genomic DNA from suspended particulate matter recovered at the upper (170 m deep) and center (600 m) area of the OMZ in the Arabian Sea by SOLiD and Ion Torrent technology. The genome of "Candidatus Scalindua profunda" served as a template to collect reads. Based on the mapped reads marine anammox Abundance was estimated to be at least 0.4% in the upper and 1.7% in the center area. Single nucleotide variation (SNV) analysis was performed to assess diversity of the "Candidatus Scalindua" populations. Most highly covered were the two diagnostic anammox genes hydrazine synthase (scal_01318c, hzsA) and hydrazine dehydrogenase (scal_03295, hdh), while other genes involved in anammox metabolism (narGH, nirS, amtB, focA, and ACS) had a lower coverage but could still be assembled and analyzed. The results show that "Candidatus Scalindua" is abundantly present in the Arabian Sea OMZ, but that the diversity within the ecosystem is relatively low.
منابع مشابه
Metagenomic analysis of nitrogen and methane cycling in the Arabian Sea oxygen minimum zone
Oxygen minimum zones (OMZ) are areas in the global ocean where oxygen concentrations drop to below one percent. Low oxygen concentrations allow alternative respiration with nitrate and nitrite as electron acceptor to become prevalent in these areas, making them main contributors to oceanic nitrogen loss. The contribution of anammox and denitrification to nitrogen loss seems to vary in different...
متن کاملEnvironmental factors shape sediment anammox bacterial communities in hypernutrified Jiaozhou Bay, China.
Bacterial anaerobic ammonium oxidation (anammox) is an important process in the marine nitrogen cycle. Because ongoing eutrophication of coastal bays contributes significantly to the formation of low-oxygen zones, monitoring of the anammox bacterial community offers a unique opportunity for assessment of anthropogenic perturbations in these environments. The current study used targeting of 16S ...
متن کاملEnrichment using an up-flow column reactor and community structure of marine anammox bacteria from coastal sediment.
We established an enrichment culture of marine anaerobic ammonium oxidation (anammox) bacteria using an up-flow column reactor fed with artificial sea water supplemented with nitrogen and minerals and inoculated with coastal surface sediment collected from Hiroshima Bay. After 2 months of reactor operation, simultaneous removal of NH(4)(+) and NO(2)(-) was observed, suggesting that an anammox r...
متن کاملDiversity, Community Composition and Abundance of Anammox Bacteria in Sediments of the North Marginal Seas of China
Over the past few decades, anammox bacteria have been recognized as key players that contribute significantly to the release of large amounts of nitrogen in the global marine nitrogen cycle. In the present study, the diversity, community composition, and abundance of anammox bacteria from the sediments of four diverse regions in the north marginal seas in China were determined via clone library...
متن کاملPresence and diversity of anammox bacteria in cold hydrocarbon-rich seeps and hydrothermal vent sediments of the Guaymas Basin
Hydrothermally active sediments are highly productive, chemosynthetic areas which are characterized by the rapid turnover of particulate organic matter under extreme conditions in which ammonia is liberated. These systems might be suitable habitats for anaerobic ammonium oxidizing (anammox) bacteria but this has not been investigated in detail. Here we report the diversity and abundance of anam...
متن کامل